Reversible jump MCMC for nonparametric drift estimation for diffusion processes
نویسندگان
چکیده
In the context of nonparametric Bayesian estimation aMarkov chainMonte Carlo algorithm is devised and implemented to sample from the posterior distribution of the drift function of a continuously or discretely observed one-dimensional diffusion. The drift is modeled by a scaled linear combination of basis functions with a Gaussian prior on the coefficients. The scaling parameter is equipped with a partially conjugate prior. The number of basis functions in the drift is equipped with a prior distribution as well. For continuous data, a reversible jump Markov chain algorithm enables the exploration of the posterior over models of varying dimension. Subsequently, it is explained how data-augmentation can be used to extend the algorithm to deal with diffusions observed discretely in time. Some examples illustrate that the method can give satisfactory results. In these examples a comparison is made with another existing method as well. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
DYNSTOCH 2013 University of Copenhagen April 17 - 19
s (Talks) 5 Adeline Samson. PARAMETER ESTIMATION IN THE STOCHASTIC MORRIS-LECAR NEURONAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Alexander Schnurr. AN ORDINAL PATTERN APPROACH TO DETECT AND TO MODEL DEPENDENCE STRUCTURES BETWEEN FINANCIAL TIME SERIES . . . . . . . . . . . . 7 Benedikt Funke. ADAPTIVE NADARAYA-WATSON LIKE ESTIMATORS FOR THE ESTIMATION ...
متن کاملNonparametric Estimation of Diffusion Processes with Discrete Observations
This paper makes three contributions to the literature on the nonparametric estimation of diffusion processes. First, we show that the nonparametric estimator of the drift function proposed by Stanton (J. of Finance, 1997) is not consistent. Second, we show that a proposed alternative nonparametric estimator of the drift function converges to the true drift in probability, in addition to provid...
متن کاملDetection and estimation of signals by reversible jump Markov chain Monte Carlo computations
Markov Chain Monte Carlo (MCMC) samplers have been a very powerful methodology for estimating signal parameters. With the introduction of the reversible jump MCMC sampler, which is a Metropolis-Hastings method adapted to general state spaces, the potential of the MCMC methods has risen to a new level. Consequently, the MCMC methods currently play a major role in many research activities. In thi...
متن کاملComputational Methods for Complex Stochastic Systems: Alternatives to MCMC
We consider analysis of complex stochastic models based upon partial information. MCMC and reversible jump MCMC are often the methods of choice for such problems, but in some situations they can be difficult to implement; and suffer from problems such as poor mixing, and the difficulty of diagnosing convergence. Here we review various alternatives to MCMC methods: importance sampling, the forwa...
متن کاملBayesian Model Selection for Beta Autoregressive Processes
We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 71 شماره
صفحات -
تاریخ انتشار 2014